Derivative of a Function

-Before we defined the slope of a curve $y=f(x)$ at a point where $x=a$ to be

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

-Where it exists, this limit is called the derivative of f at a.

Derivative

-The derivative of the function f with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.
-The domain of f^{\prime}, the set of points in the domain of f^{\prime} for which the limit exists, may be smaller than the domain of f.
-If $f^{\prime}(x)$ exists, we say that f has a derivative (is differentiable) at x.
-A function that is differentiable at every point in its domain is a differentiable function.

Apply the Definition

Differentiate $f(x)=x^{3}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \not x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2} \\
& =3 x^{2}
\end{aligned}
$$

So, $f^{\prime}(x)=3 x^{2}$.

Definition (Alternate) - Derivative at a Point

-The derivative of a function f at a point $x=a$ is the limit

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided that the limit exists.

Applying the Alternate Definition

Differentiate $f(x)=\sqrt{x}$ using the alternate definition.
At the point $x=a$

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \cdot \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{\sqrt{a}+\sqrt{a}}=\frac{1}{2 \sqrt{a}}
\end{aligned}
$$

-Applying this to an arbitrary $x>0$ in the domain of f identifies the derivative as the function $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ with domain $(0, \infty)$.

Notation

-There are many ways to denote the derivative of a function $y=f(x)$

